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ABSTRACT
Background

Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that affects a substantial portion of combat
veterans and poses serious consequences to long-term health. Consequently, the identification of diagnostic and
prognostic blood biomarkers for PTSD is of great interest. Previously, we assessed genome-wide gene expression of
seven brain regions and whole blood in a social defeat mouse model subjected to various stress conditions.

Results

To extract biological insights from these data, we have applied a new computational framework for identifying gene
modules that are activated in common across blood and various brain regions. Our results, in the form of modular
gene networks that highlight spatial and temporal biological functions, provide a systems-level molecular description
of response to social stress. Specifically, the common modules discovered between the brain and blood emphasizes
molecular transporters in the blood-brain barrier, and the associated genes have significant overlaps with known
blood signatures for PTSD, major depression, and bipolar disease. Similarly, the common modules specific to the
brain highlight the components of the social defeat stress response (e.g., fear conditioning pathways) in each brain
sub-region.

Conclusions
Many of the brain-specific genes discovered are consistent with previous independent studies of PTSD or other

mental illnesses. The results from this study further our understanding of the mechanism of stress response and
contribute to a growing list of diagnostic biomarkers for PTSD.
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Abstract

Background

Post-traumatic stress disorder (PTSD) is a severe artksdyder that affects a substantial

portion of combat veterans and poses serious consequences to long-tdtim| hea
Consequently, the identification of diagnostic and prognostic blood biorsdidkePTSD ig
of great interest. Previously, we assessed genome-wide eggmession of seven bra
regions and whole blood in a social defeat mouse model subjected twsvatress
conditions.

n

Results

To extract biological insights from these data, we have applieteva computational
framework for identifying gene modules that are activated inncomacross blood and
various brain regions. Our results, in the form of modular gene nett@khkighlight spatig
and temporal biological functions, provide a systems-level molecusariggon of respons
to social stress. Specifically, the common modules discovered dretilve brain and blog
emphasizes molecular transporters in the blood-brain barrier, ara$gbeiated genes hgve
significant overlaps with known blood signatures for PTSD, major dsjame, and bipola
disease. Similarly, the common modules specific to the brain giglthe components of the
social defeat stress response (e.g., fear conditioning pathways) in eacsubraggion.

o ® —
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Conclusions

Many of the brain-specific genes discovered are consistenpvatiious independent studies
of PTSD or other mental illnesses. The results from this siudyer our understanding pf
the mechanism of stress response and contribute to a growing distgnostic biomarkers
for PTSD.

Background

Post-traumatic stress disorder (PTSD) is an anxiety distirdeis triggered after exposure to
traumatic events. Individuals with PTSD have persistent fear amerand often feel
emotionally numb. If left untreated, PTSD can be life-threaterasgt is often linked with
substance abuse and severe depression. A study of 289,328 Iraq and fsighaeterans
who were first-time users of Veterans Affairs (VA) heatdre between 2002 and 2008
showed that 22% of veterans were diagnosed with PTSD and 17% wenesaidgwith
depression [1]. Given the predominance of PTSD and its negative consejteetang term
health, it is very important to identify measurable and quantifislolegical parameters, i.e.,
biomarkers, which can serve as prognostic and diagnostic indidatoi8TSD. Recent
studies have proposed several candidate brain gene biomarkenethssociated with PTSD
[2,3]. Even though PTSD is an illness of the brain, taking brain biopspial fluid is not a
viable option for diagnosis. Instead, blood can be used as a surroghtaiffotissue for the
purpose of identifying biomarkers [4-8]. Specifically, Rollins etratently found over 4,100
brain transcripts co-expressed in the blood of healthy human sulSjed¢tarthermore, it was
shown that the mRNA levels of certain transcripts in PTSD migtiemain changed with
respect to controls even 16 years after the traumatic event [8,bhQf, Blood gene



expression assays are of particular interest for both shortd#®d long-term diagnosis,
prognosis, and treatment of PTSD. However, the identification of prexlickbood markers
requires the accurate separation of biologically relevant caaekers from unrelated
downstream signals. This task is particularly challenging wisémg surrogate tissues, since
biological noise from the surrogate is confounded with noise fromptimeary tissue.
Fortunately, studies performed with model organisms allow the dissety of both surrogate
and primary tissues. By characterizing the molecular clzamyesent in both tissues
simultaneously, we can more effectively filter out spurious signals iruthegaite.

We recently used repeated exposures of mice to a trained aggmessee as a “social
defeat” model for evaluating PTSD symptoms [11]. This socialaief@del has often been
used to induce anxiety, depression-like and avoidance symptoms, whiciheam@ost
prominent psychiatric features of PTSD and common co-morbiditieagdsi‘cage-within-
cage resident-intruder” protocol (designed to model unpredictablegshwealaily trauma),
we exposed individual subject male C57BL/6 J mice to single aggsefes six hours daily
for 5 or 10 days, and we placed individual control subject mice inatine €ages but in the
absence of any other mice. After allowing the subject anitoatecover for either 1 or 10
days (5 day exposure) or 1 or 42 days (10 day exposure), we thenecbtlsstie samples of
blood and seven brain regions of mice under the different stresgicnadand measured
gene expression levels of these tissues using DNA micysarfs described in [11], the
durations of aggressor exposure were chosen to simulate short¢beay) and longer term
(10-day) stress. The shortest recovery phase duration (1 day) wssncto study the
immediate effects of stress. The longer of the two recoveage durations for each exposure
time were selected based on behavioral tests conducted throughotdheThese tests
demonstrated 5-day exposure defeated mice showed signs of reaomemg 10 days post-
exposure, and 10-day exposure defeated mice showed signs of re¢anechdonger times
(up to 42 days post-exposure). Because PTSD represents a pestistEntresponse, it is
important to identify differentially expressed genes (DEG#ya both immediately after the
exposure and after a long recovery period. Thus, in the current wordoamMs on genes
consistently over-/under-expressed across all experimental cmsditather than on DEGs
from individual conditions (we will address the latter in future ky¥oThe seven brain
regions analyzed in this study were chosen due to their known rolésai memory
formation, emotion regulation, and decision-making—all processes impotta the
development and pathology of PTSD [3]. In particular, the amygdgldates fear memory
and emotional aspects; the hippocampus is the center for shortntemory, and the
prefrontal cortex controls decision-making. In addition, the ventrgtstn is strongly
associated with emotional and motivational aspects of behaviorridnéesminalis serves as
a major output pathway of the amygdala, and the septal area @leyts in reward and
reinforcement along with the ventral striatum. We note thatmalasi protocol has also
recently been used to profile social defeat-induced gene expredsanges in the nucleus
accumbens, ventral tegmental area, and blood plasma [12-14].

The field of systems biology has demonstrated that complexsdseaich as PTSD are not
caused by changes in a single gene or pathway. Rather, st@wge in a hierarchy of gene
modules which collectively contribute to disruption of essentialileglfunctions [15-17]. To
characterize this module hierarchy, many researchers haveddwptinsupervised approach
[17-25] that constructs a network based on gene expression data andeglénti€tional
modules based on network topology or “guilt-by-association”. Howeverg thesthods
usually face the problem of under-determination, where the number ddcitnd@s to be
inferred far exceeds the number of independent measurements [B2}. €dudies have



adopted a supervised network identification approach that begins wahad fseed” genes
and gradually expands the list by adding interacting genes atddynresulting in a compact
gene module network [26-28]. These supervised approaches have shown goodaned
for classification tasks, and we expand upon one of them in this work.

Previous computational and experimental work suggests that funcgenal modules are
highly conserved across conditions, tissues, and species [17,29,30]. Dirpetrisoms have
been made between multiple mouse tissues [21], between human and nzouse and
between human blood and brain tissue [4]. However, modules inferred sebpdrain
different conditions yield partial overlaps at best, which makes idgawomprehensive
biological conclusions difficult. Recently, we developed a new moduleifidation tool
entitted COMBINER (COre Module Biomarker Identification witretMork Exploration)
that identifies distinct conserved expression modules acrossusagonditions. The
fundamental idea behind COMBINER is to infer candidate modules ftata of one
condition and validate the inferred modules in other conditions using supervise
classification. Those candidate modules that perform well insitfasy samples from
multiple conditions are then defined as “core modules”. There are Hueantages to this
approach: (1) The resulting modules are compact and thus excludetathidbavnstream
signals; (2) The modules are distinct and well-defined with résgec which
conditions/tissues/species invoke them; (3) This method provides muligiest
discriminative biomarkers co-validated in at least two experiahemuinditions. Given these
advantages, we have applied a customized version of COMBINERtsarsocial defeat
gene expression data deriving from seven brain regions along wiitl td identify common
expression modules.

In this work, we have attempted to answer two biological questibng/hich expression
modules act in common between blood and brain tissue of the social defeanmdet2 2.
Which modules act in common between different brain regidast so, we first performed
a pair wise comparison of differential gene expression, biologitalvags, and GO terms
between tissues. We then applied a new version of COMBINER wecimodified in two
ways (discussed below). First, we used linear models to deconvolealeépendent effects
on gene expression from effects due to social defeat. Second, elemkl an improved
consensus feature elimination method to identify robust modules fromwidhta relatively
small sample size. Our results, in the form of blood-brain and-brain social defeat core
module networks, provide a concise biological description of sociahidefel generate many
candidate PTSD biomarkers for future study.

Results and discussion

Overlaps of DEGs/DEGOs/DEPaths

First, we identified differentially expressed genes (DEG®aich individual tissue across all
time points using a limma moderated t-test [31]. The numbergmifisant DEGs (p< 0.05)
for each tissue are listed in blue on the diagonal in FiguréMeathen established the
significance of DEG overlaps by computing a hypergeometriclyevéor each pairwise
tissue combination (listed in the off-diagonal). Hypergeometric lpega< 0.05 are
considered significant (cells highlighted in red in Figure 1a).



Figure 1 Overlap analysis between blood and brain region®\umbers of significant DEGs
(a), DEGOs(b), and DEPATHYc) are listed in blue on the diagonal, while hyper geometric
p-values are listed in the off-diagonal. P-valye®.05 are considered significant (cells
highlighted in red). We consider the DEPATH overlap between hippmesirand stria
terminalis to be marginally significant (red font), as it Agsvalue< 0.1 and is supported by

a highly significant DEG overlap between the same tissues. ljidBibrain (hemisphere),
AY: amygdala, HS: hippocampus, MPFC: medial prefrontal cortexé®tral striatum, SE:
septal region and ST: stria terminalis).

Next, we identified differentially expressed Biological Prec&€O terms (DEGOS) in each
tissue by first ranking all genes in descending order of limmgaifgiance and then
performing Iterative Group Analysis (iGA) [32] for each GOntewith < 100 constituent
genes. We computed p-values for each term’s iGA score using a null distribuagredbtia
1000 random permutations of the original gene order. The numbers ofcaighiEGOs (p
< 0.05) for each tissue are listed in blue on the diagonal in Figuré/éhkestablished the
significance of DEGO overlaps in the same manner as in Figure la.

Finally, we identified differentially expressed MSigDB [33}ww.broadinstitute.org/gsea
/msigdb/) canonical sub-pathways (DEPATHS) in the same mam&E&Os with the
following modification. For each pathway, we performed iGA seplgrébe all ordered sub-
pathways ranging in size from three to 10 genes (when geaewdered in terms of limma
significance). We selected the highest scoring sub-pathway sdallished significance as
before by repeating the procedure on 1000 random gene order permuiBt®mambers of
significant DEPATHSs and significant DEPATH overlaps are dethan the same manner as
above.

The overlaps of particular interest include amygdala-hippocampug-H@) and
hippocampus-stria terminalis (HC-ST), as these two scored is@mtly in the DEG
comparison and significantly or nearly significantly, respectiveh the DEPATH
comparison. These DEPATHs describe processes such as inflamnabdibetes, apoptosis,
and immune response. Tables 1 and 2 show the significantly overlappirATBIERf AY-
HC and HC-ST, respectively. We list the original name of eabkpathway along with the
following information from the iGA sub-pathway analysis conductedh&nhippocampus
data: number of genes in the highest scoring sub-pathway (Sig. Geunleg)atlsway
permutation p-value, and Benjamini-Hochberg corrected sub-pathwsey d&écovery rate
(FDR). We note that none of these pathways would have been idensifssggnéficant from
the hippocampus data alone when using a EDBRO05 cut-off. We also note significant
overlaps in the blood-septal region and blood-Hemibrain comparisons, wh&@Di€lated
to apoptosis and DEPATHs related to insulin/diabetes, respectivedye identified.
Additional file 1: Table S1 and Additional file 2: Table S2 contalesailed lists of these
DEGOs and DEPATHS, respectively.

Table 1 Significantly overlapping DEPATHSs between amygdala and hippocampus

Name Number of significant genes p-value FDR
BioCarta cytokine pathway 9 <0.002 <0.220
BioCarta inflam pathway 8 0.002 0.220
KEGG type | diabetes mellitus 7 0.012 0.440
KEGG JAK STAT signaling pathway 10 0.014 0.456

FDR denotes false discovery rate.



Table 2 Significantly overlapping DEPATHSs between hippocampus and stria ternmalis

Name Number of significant genes p-value FDR

SA caspase cascade 6 0.005 0.400
BioCarta IL1R pathway 10 0.010 0.440
KEGG cytosolic DNA sensing pathway 9 0.021 0.499
KEGG graft versus host disease 6 0.029 0.562
KEGG prostate cancer 9 0.030 0.562
BioCarta keratinocyte pathway 9 0.046 0.636

Core module network

Although the differential expression overlap analysis provided dwmolegical insight into
the pairwise molecular similarities between mouse tissuemglwocial defeat, overlap
results between DEGs, DEGOs, and DEPATHSs were not always@misOverlap analysis
between multiple tissues is more desired, while these overlepgesy limited due to the
high noise-to-signal ratio of microarray. In addition, it was not obvimyws best to combine
the results into an overall biological description of mouse sdei@at. Thus, we turned to a
network-level analysis to provide deeper insight. Because theedeagnostic biomarkers
should be generally over-expressed in both the stress treatmenécwery period, we
extended the COMBINER method [28] to accommodate all four conditions, which resulted i
multiple-time-segment data. However, we would expect an &get @i the control mice. For
example, the gene expression patterns of control mice in the li@ediyent 1-day recovery
and 10-day treatment 42-day recovery groups were significanteretit due to mouse age.
Thus, we used the limma software [31] to deconvolve the undesiredseffecliffering
mouse ages as explanatory variables in a linear model, and wacteibtthese variables
from the original gene expression values. We then applied COMBINERe “time
standardized” data to construct a blood-brain network (common modulepmEessed in
blood and seven brain regions, Figure 2) and a brain-brain network (@ommodules co-
expressed in six brain regions, Figure 3).

Figure 2 Blood-brain network. (a) nine expression modules resulted from consensus feature
elimination; their brain-specific expression locations are indecatith numbered blue
circles. Time-specific blood expression patterns of each moduldispiayed using average
time curves in the form of expression panéig.the blood expression level of each gene in
the nine modules is indicated with a colored circle. Known protein-protegractions (PPIs)
are marked by lines connecting genes—blue lines denote within-miodedactions, while
gray lines denote between-module interactidnythe putative biological functions of the
expression modules are listed (as inferred using the KEGG atimm)t (HB: hemibrain
(hemisphere), AY: amygdala, HS: hippocampus, MPFC: medial prefraotaéx, VS:
ventral striatum, SE: septal region and ST: stria terminalis1D/10D: 5 day treatment, 1
day/10 day recovery, 10D-1D/ 6 W: 10 day treatment, 1 day/6 week recovery).

Figure 3 Brain-brain network. (a) application of COMBINER to brain data yields thirty-
seven core modules. The tissue- and time-specific expressi@nnpabf each module are
presented in the same manner as befbjehe expression levels and known PPIs of the core
module genes are displayed. The shape of a gene represents its infeiiencameghe color
denotes its expression level in that region. Blue lines denote knowm-mbdule protein-
protein interactions (PPIs), while gray lines denote between-mdeRls. (HB: hemibrain
(hemisphere), AY: amygdala, HS: hippocampus, MPFC: medial prefraotaéx, VS:



ventral striatum, SE: septal region and ST: stria terminalis1D/10D: 5 day treatment, 1
day/10 day recovery, 10D-1D/ 6 W: 10 day treatment, 1 day/6 week recovery).

Blood-brain network

We first investigated the expression modules active in both blood altigplenbrain regions.
Starting with the top 100 candidate modules (when ranked by pathweyyaabsolute t-
score—see Methods and Materials) inferred from blood samplevdataentified modules
that were also active in each brain region. To do so, we removenlefeaising Consensus
Feature Elimination until the average classification Area Uride ROC Curve (AUC)
evaluated on each brain region exceeded 0.75 (see [28] for additicaibd)défter repeating
this procedure separately for all brain regions, a total of rine modules remained. Figure
2a presents each module’s brain region-specific expression paténssed average time
curves (see Methods) to show the time-specific expressionrpattehe modules as heat
maps in Figure 2a. Figure 2b further shows the expression of teenuadules and the
protein-protein interactions (PPIs) between their gene products.cdloe of each gene
denotes its expression level in the blood. Blue lines denote known PtiAla wiodules,
while gray lines denote known PPIs between modules. Figure 2thkstsutative biological
functions of the core modules; detailed module information is sumedairzAdditional file
3: Table S3. We note that use of COMBINER resulted in seven rdisative blood
biomarker sets (average 0.81 mean AUC and 0.26 mean error raté) hvelvie each been
validated using data from one of the brain regions. Table 3tistinal number of modules
identified from each blood-brain region pair with the associatechrA&HC and mean error
rate.

Table 31dentified final modules between blood and brain regions with thassociated
mean AUC and mean error rate of both tissues

Validation HB AY HC ST MPFC SE VS Core module Core gene

Inference
Blood 92 20 23 27 22 2 19 9 43
Final gene 17152 51 70 72 7 44
Mean AUC 0.730.850.79 0.86 0.76 0.820.84

Mean error rate 0.249.24 0.29 0.22 0.31 0.270.24

The mean AUC and error rate were calculated by 500 LDAifieasswith random sampling
on both tissues. (HB: hemibrain (hemisphere), AY: amygdala, HS: rapgocs, MPFC:
medial prefrontal cortex, VS: ventral striatum, SE: septal region and &ltesminalis).

The resulting nine core modules represent biological functionsdd@imolecular transport,
integrin and tight junction function, retinol metabolism, cell cyaled mRNA transcription.
Although initially inferred from blood tissue, most of these procekags been previously
implicated in normal and pathological brain function. For example, jiigittions and ABC
efflux transporters are present in the blood-brain barrier (BBHB)the blood-cerebrospinal
fluid barrier (BCSFB) [34,35], and SLC transporters encode faigtit transporters and ion-
coupled secondary active transporters such as neurotransmittetatt@halso represent the
major class of transporters used in the delivery of drugs to the [3@]. In addition,
overexpressed integrin genes lead to vascular remodeling, whichiggebleto be highly
correlated with mild Traumatic Brain Injury (mTBI) [37], a chse related to PTSD. Finally,
retinoids are important for the maintenance of the nervous symtdnmay play a role in
Alzheimer’s disease [38].



The resulting 43 core genes also exhibit ample evidence for agsoaiath brain function
and/or PTSD. In particular, the genébkcad4, Fech, Magoh, Ppplri2land Uros were
previously shown to be differentially expressed in a human PTSDtsigndiscovered by
Segman et al. [8]. Seven of the 43 genes closely resemble fgemea blood signature for
depressionAhsp, Dhrs9, Map2k2, Slcl3a2, Sicl6al, Slc39a3, Y2ae40], whileHmbs,
Pafahlbl, Sfrs2andYeslwere previously identified as bipolar disorder blood markers [41].
In addition, Ugt2b5 and Sic6a9are also present in a blood signature for brain injury [42],
while Dbh, Itgbl, Ltc4dsandRhoawere reported to be relevant to mTBI [43]. Many of the
other genes have been associated with various mentalséhesnd neurodegenerative
diseases, including Schizophrenia, Alzheimer's disease, and slsepdetti Detailed
associations and references are listed in Additional file 4: Table S5.

Brain-brain network

In a similar manner as before, we first used COMBINER torittie top 100 candidate
modules for each brain region. We then identified common moduleadbrremaining brain
region separately, removing features using Consensus FeéituaneaEon until the average
AUC of the second region exceeded 0.75. Table 4 lists the final numiredoies identified

from each brain region pair, as well as the number of “core” meduld “core” genes for
each brain tissue (i.e. those present in the majority of pair wise dsomsgr In total, 37 core
modules with 177 genes were identified in the brain-brain network.

Table 4Numbers of COMBINER modules identified using data from six brain regons

Val AY HC ST MPFC SE VS Core module Core gene

Inf
AY / 17 25 23 0 16 1 4
HC 17 / 7 25 7 18 6 28
ST 22 29 |/ 23 7 22 9 45
MPFC 22 31 22 / 5 22 9 41
SE 18 26 25 17 /28 10 53
VS 22 30 13 5 5 / 2 6

(HB: Hemibrain (Hemisphere), AY: amygdala, HS: hippocampus, MPR&tial prefrontal
cortex, VS: ventral striatum, SE: septal region and ST: stria ternminalis

We list the final number of modules identified from each brainoregiair, as well as the
overall numbers of core modules and core genes for each region. Figdisplzg/s the
tissue- and time-specific expression patterns of each brain-bore module. Figure 3b
shows the expression levels of the genes in each module, as wedllenown PPIs occurring
between genes. Unlike the blood-brain network, the shape of a geesergprthe brain
region in which it was inferred. Table 5 provides the putative bicdb@imctions of the core
modules as inferred, while detailed module information is sumntanzédditional file 5:
Table S4.



Table 5The putative biological functions of the core modules in brain-brain netork

Pathway Module Pathway Module
Steroid 1 Complement and coagulation 20
Proteolysis 2 Neurotrophin signaling 21
Notch signaling 3 Regulation of beta cells 22
Cell adhesion 4  Transmembrane transport 23
NOD like receptor 5 Myogenesis 24
Vasopressin 6 G alpha 13 protein 25
G alpha Q protein 7  HIVNEF pathway 26
PRARA 8  Steroid 27
Linoleic acid 9 Purine 28
Chemokine signaling 10 Oocyte meiosis 29
Neuroactive ligand receptor 11 Focal adhesion 30
Muscle contraction 12 Complement and Coagulation 31
Systemic lupus erythematosus 13 Olfactory transductoino 32
DNA Repair 14  Class Al rhodopsin like receptors 33
IRS Related events 15 Host interaction of HIV factors 34
Post translational protein modification 16 Peptide ligand biding receptors 35
Arachidonic acid 17  Calcium signaling 36
ABC Transporters 18 Downstream TCR signaling 37

Phosphadylinositol signaling 19

In the brain-brain core module network, Modules 6, 8, 33, and 15 are aufariinterest.
An active Module 6 Creb3I2, Prkx, Avpin the hippocampus indicates a down regulated
PKA-CREB long term potentiation pathway, which has been shown tdrimganory [44].

In addition, the activity of Module 8Pfkalb, Hspala, Nfkbia, Jun, Cp)lim the septal
region shows down regulation of a heat shock protein (HSPA1A). Suchtyadtias
previously been found in other PTSD studies [45]. Module 33 depicts an u@teggul
dopamine pathway in the ventral striatum. This activity could potgns&ind excessive
dopamine to the amygdala and other brain regions, which has been shown to lead to increased
anxiety [46,47]. Finally, Module 15 implies an active pro-inflammatoegponse in the
medial prefrontal cortex (MPFC) that agrees with the stnd4¢8]. Other validated findings
include olfactory impairment in the stria terminalis (ST)o¢ule 32) [49]; alteration of
complement pathways in the MPFC (module 20) [50] and activated cdaguianction in

the ST (module 31) [51].

The above findings highlight that while the putative biological fumstiof the brain-brain
core modules largely encompass the DEPATHSs identified in #testgtal overlap analysis
(Tables 1 and 2), the COMBINER network-based analysis providesh richer molecular
description of mouse responses to social defeat. With additionalti@lidia human studies,
we expect these findings to yield robust prognostic and diagnostic biomarkergSD.

Conclusions

The identification of diagnostic and prognostic blood biomarkers for P@8Eently is of
great interest. In this work, we have improved the COMBINER naetheo computational
framework for identifying gene expression modules that are &&tivim common across



experimental conditions—and applied it to blood and brain data from a matiaé defeat
model. The resulting gene networks highlight stress-related bialogrocesses active in
both brain and blood and provide a comprehensive molecular descriptionalfdsdeat. In
total, our approach identified seven blood biomarker sets that have eachaltidated for
classification performance in one brain sub-region. Some of the gamksprocesses
discovered are consistent with previous independent studies of PTSOhesr méental
illnesses, while others represent novel candidate PTSD biomarkersoW that the same
approach can be readily applied to other disease models to constreictede/orks that are
activated in common across tissues; future work will focus on this task.

Methods

Blood, organ and tissue collection

Terminal organs, brain regions, and blood samples from subject and c@B#BL/6 mice
were collected after 24 hours, or 6 weeks (42 days) post 10-day Stoess, and 24 hours or
1.5 weeks post 5-day social stress. Brains of C57BL/6 mice caee¢ully removed from the
skulls, and left or right hemi-brain from each defeated or contmise was dissected into
different anatomical and functional regions: Hemibrain (Hemispr{et®), amygdala (AY),
hippocampus (HS), medial prefrontal cortex (MPFC), ventral stnafVS), septal region
(SE) and stria terminalis (ST). The number of defeated and canitelin different regions
and conditions are summarized in Table 6.

Table 6 Defeated and control mice (in the form of (number of defeated) / (numbef
control)) in different regions and conditions

Condition 5D-1D 5D-10D 10D-1D 10D42D
Tissue

Blood G/ 5) (6B)/5G) G)/@) ()5
HB (Hemibrain) 5/(5) (5)/() (5)/(5) (5)/(5)
AY (Amygdala) 2@ @G AHIE) @AI0)
HC (Hippocampus) @)/@3) (6)/(4) G)/6) (55
MPFC (Medial Prefrontal Cortex) B)Y/r@d GB/5G @101 4)/4)
SE (Septal Region) @/3 @)/@ @/3 (3)/@A)
ST (Stria Terminalis) G)Y/(B) (B)/(B) 4)/@) (5)/(4)
VS (Ventral Striatum) G)/(5) (B)/(5B) (4)/@) (4)/(5)

(5D-1D/10D: 5 day treatment, 1 day/10 day recovery, 10D - 1D/ 6 WtayQreatment, 1
day/6 week recovery).

RNA isolation and quality assessment

Total RNA was isolated according to the Trizol® method (Invitrogen, IGrand Island, NY)
from homogenized whole blood and brain regions. RNA from blood was idalateg the

PreAnalytiX PAXgene® blood RNA kit (Qiagen Inc., Valencia, CAJe collected the seven
organ tissues from 5-6 control and defeat mice, respectively. Wiaatst RNA integrity

using the Agilent Bioanalyzer and excluded samples of low qualtiich appears to either
have low total RNA, or low ribosomal RNA (rRNA) mass ratiovmstn 28S and 18S rRNA
and high amount of non-ribosomal RNAs in the electropherograms.



Microarray hybridization

Microarray assays were performed using Agilent’'s genome mimgse expression array (GE
4x44K v2 two color microarray) slides and kits (Agilent Technologies Santa Clara, CA)
following the manufacturer's protocol. To minimize batch effectache sample was
hybridized with a universal common reference that was usedl fex@riments. Hybridized
microarray slides were scanned using Agilent Technologies Scanner G2509€93%43.

Microarray data processing

Genespring with feature extraction 10.x (Agilent, CA) was usegrocess all two-color
chips. Log2 transformation, Lowess normalization, and quantile normaitizatre applied
to normalize within and between microarrays. For the latter, applied quantile
normalization separately on data from each tissue. Outlier s@uts converted to missing
values. If more than half of the expression values of a probemissing, we removed the
probe from consideration. We then imputed missing values using tharésheneighbor
imputation method. To avoid incurring a bias in favor of genes represbyptedgreater
number of probes, we aggregated multiple probes from the same Bwneztogether by
computing the mean of the “sibling” probes. We have deposited albaniay data for this
study at the Gene Expression Omnibus (GEO):

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45035 .

Linear model

We used a linear model-based approach to deconvolve the experinmataffécts from the
social defeat expression data. Assuming log-additive effects, etinooth estimates the
contributions of each of the four experimental time points and subthestsaway from the
remaining effect of social defeat. The linear model we uselbt¢onvolve the experimental
time effect is defined as follows:

D17 1 1 0 0 07

C1 01 0 0 Ofayrn

D, 1.0 1 0 0ff 4

62_00100[’81} )
D;|7 11 0 0 1 0 ﬁz

(:300010[3J

D410001ﬁ4

lc,] Lo o o o 1

whereD; andC; i = 1, ..., 4 denote laggene expression values of defeated and control mice
in conditioni, agefeardenotes the overall effect of social defeat gnd.., f4 are the undesired
time effects. In practice, we solve the above over determirsdmnsyfor each gene separately
using least squares (implemented in the limma package), aafigiward only the gene-
specific defeat effect for subsequent analyses.



Differential expression analysis

As described above in Section 2, we used the R/Bioconductor limma paakagesrative
Group Analysis (iGA) method for differentially expressed gend &O term/pathway
identification, respectively.

COMBINER

As shown in Figure 4, the COMBINER method first infers theisteally discriminative
modules from an inference dataset, then validates them in varaggtion sets using
consensus feature elimination. If a validated final module is cess@d in at least half of
the validation sets, then it is defined as a core module. Finallgroyect these core modules
onto known PPI networks. To remove features, we generated 250 groups tSsifiecs in
parallel and applied Linear Discriminant Analysis (LDA) witgtursive feature elimination
[52] to each to compute AUCs as well as weight vectors. Eatiréeaas then ranked by its
average normalized weight. The most consistently low-rankinmireeavas then removed
recursively until the average AUC threshold of 0.75 was achievedthiat point, the
remaining features were considered to comprise the final modules.

Figure 4 Schematic overview of COMBINER.COMBINER first infers candidate modules
as activity vectors from each pathway in an inference datasleenl validates these modules
in validation datasets by regenerating activity vectors andorp@ng supervised
classification. Finally, the modules present in at least half of the vahdsgts are considered
to be core modules. The resulting core module markers are thgttpd onto a known
protein-protein interaction network. We generated 250 groups of 500fielassi parallel
using LDA with recursive feature elimination. Both the classih\UC and weight vectors
were computed, and each feature was then ranked by its averagdizenmveight. The
most consistently low-ranking feature was then removed recursingilythe average AUC
threshold was achieved. At this point, the remaining markers soesadered to comprise the
final modules.

In our previous work [28], we applied both the Condition Responsive GenesGC[GB]
and Core Module Inference (CMI) [28] methods to infer candidate modatesxpress them
as pathway activities (PAs). In the greedy search procesRGCficks up either up- or
down-regulated genes, while CMI identifies genes of both directiogsther. However,
because of the multiple-time-point nature of the social defeatttiatapplication of the CMI
method is not straightforward. Thus, in this work we used only the C@RiBod with the
procedure described as follows. For a given pathway, we first renktandardized gene
expressions by their limma moderated t-score. If up-reguigdeds are dominant, we rank
the t-score in descending order; otherwise, ascending order is cNes¢nwe aggregate the
first two genes using the formuta (x; + x,)/V2 ; if the expression of this aggregate yields
a larger absolute t-score than the first gene, this combmatiretained as a module with the
combined expression becoming the PA. Otherwise, the procedure fadlthethe third gene
using = (x; + x, + x3)/v/3 , and so on, until the module-size limit, 25 genes, is reached.
Finally, we ranked all modules using the absolute value of the pathway activaigt-sc

We faced two major challenges when modifying our COMBINER methadt, Rhe
multiple-time-point nature of the data initially decreased the rpinelassification
performance of the static LDA classifier [52]. Second, the Isdeh sample size leads to a



large variability of feature ranks after recursive featiimination. To cope with the first
challenge, we used a linear model to deconvolve the time effentslie original expression
values. We solved the second problem by improving our method for conseatwe fe
elimination. We generated 250 groups of 500 classifiers in parthiésl removed the bottom
feature using the voting principle. In general, using additional groupdasesifiers will
further improve the reproducibility of the final modules. In our expeae250 groups were
sufficient to yield a reproducible result (results not shown).Ilinae used a fixed average
AUC threshold to determine the final modules instead of the maxgevéydC threshold
described in [28]. This was required since the inference and valids¢ts can be very
dissimilar, which leads to low values of the max average AUC.

We obtained pathway information from the MSigDB v3.0 Canonical Pathwsalyset [54].
To decrease redundancy, we applied pathway filtering to remove butkwagys. This

resulted in a pathway dataset containing 791 pathways with 5,633 gesegd in all
regions. The protein-protein interaction information was obtained from String v9.0 [55].

Average time curve

Let y; be the relative expression level of genat the sampling timg. The time-point
expression patterns were modelled as follows,

vij = () + e (2)

where p;(t;) = log,(|%°(¢;)/%°(t;)|) is the population average time curve for géne
evaluated at timg and wherey; is the random deviation from this curvé@.(t;) andx¢(¢;)
are average expressions of disease and control mice respectivggnéoat timet;.

Software
COMBINER was implemented in Matlab R2010a with Bioinformatmsitiox v3.5 (Math
Works Inc., Natick, MA), statconn (http://www.statconn.com/), LinkR

(http://www.mathworks.com/ matlabcentral/file exchange/5051), and R [56].0Lineescode
can be found in Additional files 6 and 7.
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